Desain Sistem Kontrol Tekanan Dinamis pada Pipa Distribusi Berbasis Mikrokontroler

Authors

  • Benriwati Maharmi Teknik Elektro, Sekolah Tinggi Teknologi Pekanbaru, Pekanbaru Author
  • Ardiansyah Sudarmadi Teknik Elektro, Sekolah Tinggi Teknologi Pekanbaru, Pekanbaru Author
  • Engla Harda Arya Teknik Elektro, Sekolah Tinggi Teknologi Pekanbaru, Pekanbaru Author
  • Zulfatri Aini Teknik Elektro, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau Author

DOI:

https://doi.org/10.46962/snte.25.065

Keywords:

PID control, Arduino Uno , Pressure sensor

Abstract

Abstrak—Pengendalian tekanan pada sistem perpipaan fluida merupakan aspek krusial dalam menjamin keselamatan dan efisiensi operasi, terutama pada infrastruktur pipa minyak yang telah berumur. Penelitian ini bertujuan untuk merancang dan menguji sistem kontrol tekanan berbasis Proportional-Integral-Derivative (PID) yang terintegrasi dengan pressure sensor dan servo valve. Sistem dikembangkan menggunakan mikrokontroler Arduino Uno dan diuji dalam kondisi simulasi mendekati operasi nyata. Proses tuning parameter PID dilakukan secara eksperimental menggunakan metode trial and error untuk mendapatkan performa kendali yang optimal. Hasil pengujian menunjukkan bahwa kombinasi parameter PID terbaik adalah Kp = 1, Ki = 0,045, dan Kd = 0,021. Sistem ini mampu mereduksi overshoot dari 13,6% menjadi 2,4%, serta menurunkan nilai error steady-state hingga 1,7%. Selain itu, waktu tunda dan waktu naik yang diperoleh masing-masing sebesar 10,2 detik dan 19,3 detik. Temuan ini menunjukkan bahwa sistem mampu menjaga kestabilan tekanan dengan respons yang cepat dan akurat, serta berpotensi diterapkan sebagai solusi efisien untuk sistem perpipaan minyak yang membutuhkan peningkatan keandalan dan keselamatan operasional.

References

Q. Zhuang, D. Liu, and Z. Chen, “Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNN Model,” Energy Eng., vol. 121, no. 3, pp. 821–834, 2024.

M. A. Adegboye, A. Karnik, and W.-K. Fung, “Numerical study of pipeline leak detection for gas-liquid stratified flow,” J. Nat. gas Sci. Eng., vol. 94, p. 104054, 2021.

M. R. Davidson, Q. D. Nguyen, C. Chang, and H. P. Rønningsen, “A model for restart of a pipeline with compressible gelled waxy crude oil,” J. Nonnewton. Fluid Mech., vol. 123, no. 2–3, pp. 269–280, 2004.

P. D. Thuc, H. V Bich, T. C. Son, L. D. Hoe, and V. P. Vygovskoy, “The problem in transportation of high waxy crude oils through submarine pipelines at JV Vietsovpetro oil fields, offshore Vietnam,” J. Can. Pet. Technol., vol. 42, no. 06, 2003.

A. Ahmad Azmy, S. Karuppanan, and A. A. Wahab, “Failure pressure estimation of corroded pipeline with different depths of interacting defects subjected to internal pressure,” Appl. Mech. Mater., vol. 393, pp. 1005–1010, 2013.

B. Hosseiny, J. Amini, H. Aghababaei, and G. Ferraioli, “Enabling High-Resolution Micro-Vibration Detection Using Ground-Based Synthetic Aperture Radar: A Case Study for Pipeline Monitoring,” Remote Sens., vol. 15, no. 16, p. 3981, 2023.

A. Aswin and A. Hasnan, “Stress analysis evaluation and pipe support type on high-pressure and temperature steam pipe,” Int. J. Mech. Eng. Technol. Appl., vol. 4, no. 1, pp. 31–38, 2023.

R. E. Melchers, “Post-perforation external corrosion of cast iron pressurised water mains,” Corros. Eng. Sci. Technol., vol. 52, no. 7, pp. 541–546, 2017.

C. J. Li, X. Wu, W. L. Jia, and K. X. Liao, “Water Hammer Characteristics of Glass Reinforced Plastic Oil Transportation Pipeline,” Adv. Mater. Res., vol. 204, pp. 127–130, 2011.

H. Iqbal, S. Tesfamariam, H. Haider, and R. Sadiq, “Inspection and maintenance of oil & gas pipelines: a review of policies,” Struct. Infrastruct. Eng., vol. 13, no. 6, pp. 794–815, 2017.

J. Chen, M. F. Li, J. H. Wang, and X. L. Wang, “A study on the safety factor for corrosion assessment of oil and gas pipeline through in-line inspection,” Key Eng. Mater., vol. 795, pp. 233–238, 2019.

H. Q. Pham et al., “Highly sensitive planar Hall magnetoresistive sensor for magnetic flux leakage pipeline inspection,” IEEE Trans. Magn., vol. 54, no. 6, pp. 1–5, 2018.

W. J. S. Gomes and A. T. Beck, “Optimal inspection and design of onshore pipelines under external corrosion process,” Struct. Saf., vol. 47, pp. 48–58, 2014.

H. P. Mobin, “Risk Level Assessment of Pipelines using a Combination of Analytical Network Process and Risk Based Inspection Methods,” 2018.

H. Hameed, Y. Bai, and L. Ali, “A risk-based inspection planning methodology for integrity management of subsea oil and gas pipelines,” Ships offshore Struct., vol. 16, no. 7, pp. 687–699, 2021.

A. P. Putra, J. W. Soedarsono, A. I. Pangesty, A. Aprizal, and R. Ramadhan, “The risk identification on 3" GL BO3-52520 process pipelines using a risk-based inspection method,” Teknomekanik, vol. 5, no. 1, pp. 28–34, 2022.

M. I. Y. Asfar, J. W. Soedarsono, A. Wijaya, T. Aditiyawarman, D. Soelistiyono, and R. Ramadhan, “Quantitative Risk-Based Inspection on Gas Riser Pipelines at Offshore Facilities,” Teknomekanik, vol. 4, no. 2, pp. 78–84, 2021.

X. Y. Lu, Y. Zhou, S. Y. Chen, X. G. Li, and H. L. Zhu, “The establishment of ninety degree gas elbow pipes internal pressure distribution model,” Appl. Mech. Mater., vol. 670, pp. 696–699, 2014.

X. Y. Lu, X. L. Lu, L. L. Huang, J. M. Liu, Y. Y. Liu, and Y. M. Xu, “Simulation of Influencing Parameters of the Inner Surface Pressure of Elbow Pipe and the Establishment of Pressure Formula,” Appl. Mech. Mater., vol. 252, pp. 64–68, 2013.

P. J. Malppan and K. S. Sumam, “Pipe burst risk assessment using transient analysis in surge 2000,” Aquat. Procedia, vol. 4, pp. 747–754, 2015.

K. Zhai et al., “Mechanical responses of bell‐and‐spigot joints in buried prestressed concrete cylinder pipe under coupled service and surcharge loads,” Struct. Concr., vol. 22, no. 2, pp. 827–844, 2021.

X. Y. Lu, X. L. Lu, L. L. Huang, Y. M. Xu, and Y. Y. Liu, “The Analytical Model and Flow Parameter Influencing the Internal Pressure Distribution of Elbow Pipe,” Adv. Mater. Res., vol. 366, pp. 192–196, 2012.

W. Li, S. Lu, Y. Liu, R. Wang, Q. Huang, and J. Yan, “CFD simulation of the unsteady flow of a single coal log in a pipe,” Can. J. Chem. Eng., vol. 93, no. 11, pp. 2084–2093, 2015.

L. Miao, M. Yuan, and G. Li, “Design private cloud of oil and gas SCADA system,” EAI Endorsed Trans. Scalable Inf. Syst., vol. 1, no. 3, 2014.

E. B. Priyanka, C. Maheswari, and S. Thangavel, “Remote monitoring and control of LQR-PI controller parameters for an oil pipeline transport system,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., vol. 233, no. 6, pp. 597–608, 2019.

C. Wang, M. Liu, A. Xu, and J. Zhang, “The application of PLC control system in oil and gas pipeline transportation,” Mol. Cancer Ther., vol. 8, no. 12, p. 133, 2017.

E. B. Priyanka, C. Maheswari, and B. Meenakshipriya, “Parameter monitoring and control during petrol transportation using PLC based PID controller,” J. Appl. Res. Technol., vol. 14, no. 2, pp. 125–131, 2016.

V. Chmelko, M. Garan, M. Šulko, and M. Gašparík, “Health and structural integrity of monitoring systems: The case study of pressurized pipelines,” Appl. Sci., vol. 10, no. 17, p. 6023, 2020.

B. Maharmi, F. Ferdian, and F. Palaha, “Sistem akuisisi data solar cell berbasis mikrokontroler dan labview,” SainETIn J. Sains, Energi, Teknol. Dan Ind., vol. 4, no. 1, pp. 19–24, 2019.

T. Hagiwara, K. Yamada, S. Aoyama, and A. C. Hoang, “The parameterization of all plants stabilized by a Proportional-Derivative controller,” in The 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand-Conference 2011, IEEE, 2011, pp. 585–588.

A. Aldemir and M. S. Anwer, “Determination of optimal PID control parameters by response surface methodology,” Int. Adv. Res. Eng. J., vol. 4, no. 2, pp. 142–153, 2020.

A. Irawan and M. I. P. Azahar, “Cascade control strategy on servo pneumatic system with fuzzy self-adaptive system,” J. Control. Autom. Electr. Syst., vol. 31, no. 6, pp. 1412–1425, 2020.

E. Kurniawan, “Analysis and Simulation of Proportional Derivative and Proportional Integral Derivative Control Systems Using Xcos Scilab,” J. Technomaterial Phys., vol. 3, no. 1, pp. 36–44, 2021.

T. Hagiwara, K. Yamada, A. C. Hoang, and S. Aoyama, “The parameterization of all plants stabilized by a PID controller,” Key Eng. Mater., vol. 534, pp. 173–181, 2013.

M. A. Fellani and A. M. Gabaj, “PID controller design for two tanks liquid level control system using Matlab,” Int. J. Electr. Comput. Eng., vol. 5, no. 3, p. 436, 2015.

H. Maghfiroh, M. Nizam, and S. Praptodiyono, “PID optimal control to reduce energy consumption in DC-drive system,” Int J Pow Elec Dri Syst ISSN, vol. 2088, no. 8694, p. 2165, 2020.

Y. Moriwake, S. Dohta, T. Akagi, and S. Shimooka, “Application of Pressure Control Type Quasi-Servo Valve to Force Control System,” J. Autom. Control Eng. Vol, vol. 4, no. 3, 2016.

Y. Moriwake, T. Akagi, S. Dohta, and F. Zhao, “Development of low-cost pressure control type quasi-servo valve using embedded controller,” Procedia Eng., vol. 41, pp. 493–500, 2012.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out‐of‐round pipes,” Struct. Control Heal. Monit., vol. 23, no. 2, pp. 303–314, 2016.

L. Wong et al., “Leak detection in water pipes using submersible optical optic-based pressure sensor,” Sensors, vol. 18, no. 12, p. 4192, 2018.

P. Y. Aisyah, A. I. Hija, and E. P. Hadi, “Pressure and Flow Control System to Prevent Drinking Water Pipe Leaks,” IPTEK J. Eng., vol. 9, no. 3, pp. 116–120, 2023.

T. Jung and S. Yang, “Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel,” Sensors, vol. 15, no. 5, pp. 11823–11835, 2015.

M.-C. Liu et al., “Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations,” Lab Chip, vol. 13, no. 9, pp. 1743–1753, 2013.

B. Maharmi, R. E. Hartandy, A. Karnaidi, N. Nurhasnah, and S. Rini, “Sistem Deteksi Sinyal Handphone Di Dalam Kabin Pesawat Berbasis Mikrokontroller Atmega328,” SAINSTEK, vol. 10, no. 2, pp. 117–123, 2022.

B. Maharmi, B. Widyastomo, and F. Palaha, “Water Flow Measurement-Based Data Acquisition Using Arduino Microcontroller and PLX-DAQ Software,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 1, p. 107, 2022, doi: 10.26555/jiteki.v8i1.23637.

Downloads

Published

2025-09-26

Issue

Section

Articles

How to Cite

Desain Sistem Kontrol Tekanan Dinamis pada Pipa Distribusi Berbasis Mikrokontroler. (2025). Seminar Nasional Teknik Elektro, 4(1), 19-30. https://doi.org/10.46962/snte.25.065